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The Calculation of the Compositions of Phases in Equilibrium 

BY GEORGE SCATCHARD 

The Gibbs method1 of calculation of the compo­
sitions of two phases of a two-component system 
which are in equilibrium is to plot at constant 
pressure and temperature the Gibbs free energy 
(E — TS + PV) per unit quantity of the system 
against the fraction of one component in the sys­
tem for each of the phases, with the same standard 
states for each phase. A common tangent indi­
cates equilibrium, and the compositions of the two 
phases are given by the points of tangency. This 
method is excellent for illustrative purposes, but it 
has the disadvantage for quantitative calculations 
that it is difficult to determine the points of tang­
ency accurately, especially if the fraction of either 
component is small, because the slope of the curves 
is infinite for zero fraction of either component. 

The method of Seltz2 is to plot first the activity 
of each component against the mole fraction with 
the same standard state for each phase. If the 
composition of one phase is plotted against the 
composition of the other phase for which the ac­
tivity of the first component is the same, and is 
also plotted against the composition of the other 
phase for which the activity of the second compo­
nent is the same, the two curves will intersect 
at the equilibrium compositions. Seltz increases 
the accuracy of the method by plotting the differ­
ence in compositions of the two phases, instead of 
the composition of the first phase itself, against 
the composition of the second phase. The ac­
curacy of this method is limited only by the ac­
curacy with which the activities are known, or, if 
these are given analytically, by the patience of 
the computer. However, the determination of 
each point on the final curve requires the reading 
of a point on each of two other curves, so that the 
attainment of high accuracy becomes tedious. 

The following method is as accurate as that of 
Seltz, and considerably simpler and more direct.8 

(1) J. Willard Gibbs, "Collected Works," Longmans, Green & 
Co., New York, N. Y., 1906, p. 118. 

(2) H. Seltz, T H I S JOURNAL, 56, 307 (1934); 57, 391 (1935). For 
the application of these two methods, see G. Scatchard and W. J. 
Hamer, ibid., 5T, 1805, 1809 (1935). 

(3) This method was developed by analogy to Slater's method of 
plotting free energy versus pressure for two phases of a one-component 
system, and determining equilibrium by the intersection of the two 
stable branches (J. C. Slater, "Introduction to Chemical Physics,'1 

McGraw-Hill Book Company, Inc., New York, N. Y., 1939, pp. 
187-188). 

It is to plot for each phase at constant temperature 
and pressure the chemical potential, or the activ­
ity, of one component against the same property 
of the other component, with the same standard 
states for each phase. An intersection locates an 
equilibrium point since the potential, or activity, 
of each component is the same in the two phases. 
If the thermodynamic functions are plotted 
against the composition for the region near this 
intersection, the two activities, or chemical po­
tentials, give two check determinations of the 
equilibrium composition. For the survey of the 
whole range, the activity has the advantage that 
its change is only from a number of the order of 
unity to zero, whereas the chemical potential 
goes to minus infinity. For the exact location of 
an intersection it sometimes saves computation 
to use the common logarithm of the activity, 
which is the chemical potential divided by 2.3RT. 

If the standard states are the two components 
in the same state of aggregation as the mixture, 
the activity-activity plot for an ideal solution is 
a straight line, Oi + a2 = 1. Negative deviations 
from Raoult's law lead to curves nearer the origin 
and positive deviations lead to curves further 
from the origin. If the components are not com­
pletely miscible, there are two intersecting stable 
branches and an unstable branch connecting two 
cusps, just as in the free energy-pressure plot for 
a one component system. The limit of absolute 
immiscibility is represented by the two straight 
lines a\ = 1 and a% = 1, with the unstable branch 
entirely at infinity. 

Figure 1 shows ai versus a2, and Fig. 2 shows aj 
and a% versus x for a series of mixtures for which 

log O1 = log x + B[I - x/(2 - x)¥ (1) 
log a2 = log (1 - x) + 2B[x/(2 - x)Y (2) 

Reading any set of curves from top to bottom, B 
is V3, Vs. 0> - 2 A - These curves correspond to 
the simple theory of non-polar mixtures4 with the 
molal volume of the second component twice that 
of the first. For these equations, critical mixing 
occurs when B = 0.565, x = 0.732, ax = 0.924 
and a2 = 0.638. 

If there is a second phase in a different state of 
(4) G. Scatchard, Chim. Rev., 8, 321 (1931). 
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Fig. 1.—Activity-activity ciarves for a single state of 
aggregation. 

aggregation, the activity of a pure component 
will be unity in this second state only at the tran­
sition temperature. We will designate the state 
of higher energy, which is stable at higher tem­
peratures, with primes and let the activity of each 
pure component in that state be unity at each 
temperature. We will let the unprimed symbols 
refer to the phase of lower energy, and designate 
the activity of a pure component in that state 
with a superscript zero. Then 

/

T 
(Ai?i/2.3i?e2)Je (3) 

e-r , 
in which T is the temperature at which a^ is de­
termined, T\ is the temperature of transition, and 
AiIi is the enthalpy change for the transition of 
one mole. If this enthalpy is independent of the 
temperature 

log O1" = (Affi/2.3i?r) (i/r, - i/r) (4) 
In what follows we will speak of the state of lower 
energy as the solid, that of higher energy as the 
liquid, and the transition as melting, for this is the 
combination which is most often encountered. 
The whole discussion may be made more general, 
however, merely by using the more general lan­
guage of this paragraph. 

If the solid is the first component pure, the 
corresponding curve will be a\ = ai0, a straight 
line parallel to the (h. axis. There are some who 
claim that this limit of a pure phase can never be 
reached in equilibrium with a mixture, but that 
the second component is always soluble to a 
finite extent. If there is a slight solubility, the 
lines will not be exactly parallel to the axis, but 
Oi will decrease slightly as a% increases. The ques-

Fig. 2.—Activity-mole fraction curves for a single state 
of aggregation. 

tion of practical importance is whether the differ­
ence between a\ and G1

0 is greater than the error 
of determining either. If the difference between 
ai and ai0 can be ignored, there results the familiar 
freezing point curve, which can more conveniently 
be calculated directly. 

If the solid is a compound of vi molecules of the 
first component with v2 molecules of the second, 

O1VIa2W = Kt = Kc
0 exp r {AHc/Re*)dO (4) 

in which T0 is the melting point of the compound 
and AH0 is its enthalpy of melting per mole. 
Kc° = (O1"* a,'") at T0 and x = V(" i + * ) . H 
the components are slightly soluble in the com­
pound, there will be very little change in the ac­
tivity-activity curve, but the activity-composi­
tion curves for the compound will be altered from 
perpendicular lines at x = v\l(vx + n) to very 
steep lines near this abscissa, always obeying ap­
proximately the relation a i " W 2 is equal to 
KcxIxc or to K0(I — X)I(X — xc), whichever is 
smaller than K0. The limit of zero solubility of 
a component in a compound has the same status as 
that of zero solubility of one component in the 
other, which is discussed above, and the important 
practical question is whether the difference be­
tween ainaz" and K0 is greater than the error of 
determining either. 

Figure 3 gives the curve corresponding to equa­
tions (1) and (2) with B = - ! / s a s a full line, and 
those corresponding to a-i equal to 0.5, 0.45 and 
0.4 and for axa2 equal to 0.90, 0.81 and 0.72 as 
broken lines. Although it is very probable that 
the parameter B decreases with increasing tern-
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Fig. 3.—Activity-activity curves showing compound and 
pure component in one state. 

perature, the change need not be great, and this 
diagram may be taken as three diagrams con­
densed in one to represent the equilibrium at three 
temperatures between a liquid and two solid 
phases, the first component pure and the equimo-
lal compound. The full line belongs to each of 
these diagrams, but a broken line belongs only to 
the diagram corresponding to its number. In the 
first group the compound curve is just tangent to 
the liquid curve at a, which corresponds to the 
maximum in the equilibrium diagram; the liquid 
curve intersects the solid component line at b so 
that this temperature is well below the melting 
point of the first component; if the diagram is com­
plete, all the temperatures illustrated are above 
the melting point of the second component. 
The second group of curves shows equilibrium of 
the liquid with the compound at c and at d, and 
with the first component at e; the fact that the 
third compound curve intersects the second solid 
component curve near e has no significance for 
they belong to different diagrams. The third 
group shows equilibrium between the liquid and 
the compound at / , and between the compound 
and the solid component at g. It is obvious that 
there is a eutectic at a temperature about midway 
between those represented by groups two and 
three. The insets in this figure and the two which 
follow show the derived temperature-composition 
equilibrium diagrams. The circles are the points 
determined by the intersections, also marked by 
circles, in the corresponding activity-activity 
diagrams. 

In Fig. 4 the full curve represents equations 
(1) and (2) with B = 2/3 and the broken lines rep-
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Fig. 4.—Activity-activity curves showing eutectic. 

resent these equations with B = '/2 and with ai0 

= 0.9 <z2° and O2
0 equal to 1.00, 1.05, 1.10, 1.15, 

1.20 and 1.25, successively. If we take as unity 
the activities of the pure components in the solid 
rather than in the liquid, this diagram corresponds 
to the solid line for the solid state and the broken 
lines for the liquid state, each at a different tem­
perature, except that the B's are again regarded as 
independent of the temperature. The first curve 
is at the melting point of the second component 
and, as the temperature decreases, the activity of 
the second component in the equilibrium solutions 
decreases. The first three broken lines represent 
temperatures above the melting point of the first 
component. The fourth curve shows two pairs of 
solutions in equilibrium, and the fifth shows a eu­
tectic in which one liquid is in equilibrium with 
two solid phases. The sixth curve shows two 
solid phases in equilibrium, but no stable liquid 
phase. 
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Fig. 5.—Activity-activity curves showing peritectic. 
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Figure 5 shows the same full curve and the same 
value B for the broken curve as in Fig. 4. Here, 
however, a? = 0.5 a2° and a2° is 1.00, 0.95, 0.90 
and 0.85. The first is again at the melting point 
of the pure second component, and the other 
broken curves represent higher temperatures, but 
all below the melting point of the first compo­
nent. The second shows equilibrium between the 
liquid and the solid phase richer in the second 
component, the fourth shows equilibrium between 
the liquid and the solid phase poorer in the second 
component, while the third shows one liquid in 
equilibrium with both solid phases at a peritectic 
point. 

From Figs. 4 and 5 we may see that on the tem­
perature-composition diagram the lines of two-
phase equilibrium will start downward from the 
melting point of the second component if the 
negative of the slope of the a2 versus Ci curve— 
— da2/daj is greater for the liquid than for the solid, 
and that the equilibrium lines will start upward if 
— da2/dai is less for the liquid than for the solid. 
Since the solutions obey both Raoult's law and 
Henry's law at the limit of the pure second com­
ponent, the limit of — da2/dai is 1/&IOI° and that 
of dih'/dai is 1/fa', if ki and W are the Henry's 
law constants in the solid and in the liquid and 
ai0' is again taken as unity. So the equilibrium 
curves will start downward if k&i0 is greater than 
k\. This will occur even when ai0 is less than 
unity, that is, below the melting point of the first 
component, if k\ is enough greater than k\', that is 
if the deviations from Raoult's law are enough 
more positive in the solid than in the liquid. Such 
a behavior leads to a minimum in the equilibrium 
diagram which may be a eutectic. If ai0 is 
greater than unity, but the deviations in the solid 
are enough more negative than in the liquid to 
make kiai0/ki' less than unity, there will be a 
maximum in the equilibrium diagram. 

Similarly at the triple point, if — dch/dai for 
the liquid lies between those for the two solid 
phases, there will be a peritectic, if it does not 
there will be a eutectic, but it is not so simple to 
relate this condition to the deviations from Ra­
oult's law. The change from peritectic to eutectic 
must come when the composition of the liquid is 

the same as that of one of the solid phases. Al­
though the component present in greater quantity 
may possibly have deviations from Raoult's law 
greater in a phase where there is complete mis-
cibility than in a phase of the same composition 
in a state of aggregation in which miscibility is in­
complete, such a relation is certainly highly im­
probable. The usual change would then occur 
when the activity of the pure component is greater 
than unity in the pure liquid, that is, at a tem­
perature below the melting point of the pure com­
ponent, and there should be a range of peritectic 
temperatures, probably both below and above the 
melting point, for systems which also have a mini­
mum equilibrium temperature. 

Even with systems which follow simple equa­
tions like (1) and (2), the possible variety of be­
havior is very great. If the volumes, the melting 
points and the heats of melting are known for the 
pure components and for any compounds, how­
ever, this variety is greatly reduced, as only one 
parameter for each phase is left undetermined. 
One of the great advantages of the use of analyti­
cal expressions for the chemical potentials or the 
activities is to determine which equilibrium curves 
correspond to simple behavior, and they are often 
not the ones which are themselves simplest geo­
metrically. It is hoped that the present method 
is simple and easy enough to apply so that equilib­
rium curves corresponding to simple equations for 
the chemical potentials will be used much more 
often as a check upon experimental measurements. 

Summary 

The compositions of two phases of a binary 
system which are in equilibrium may be conven­
iently determined by plotting for each phase the 
activity, or the chemical potential, of one compo­
nent against the same property of the other com­
ponent, with the same standard for each state of 
aggregation. At equilibrium the two curves in­
tersect. The corresponding compositions may be 
determined from an auxiliary plot of either ac­
tivity, or chemical potential, against composition. 
The application of this method to several typical 
systems is illustrated. 
CAMBRIDGE, M A S S . RECEIVED J U N E 27, 1940 


